

INITIAL FINDINGS

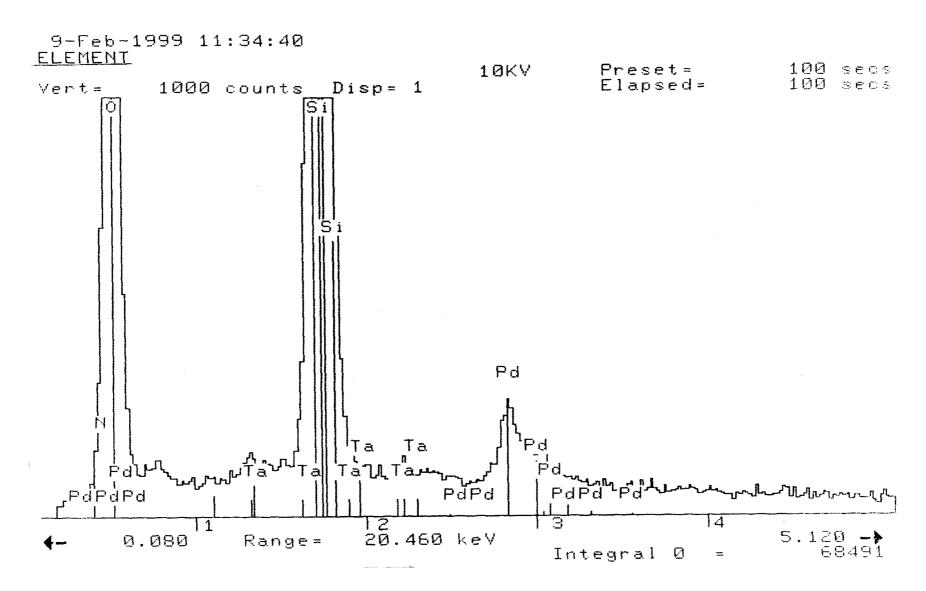
- 72 Hour Vacuum Bake Followed By Sealing RGA Holes (Electrical Performance Normal for all Channels)
- 160 Hour Burn-in @ +85C, DC Bias (1 of 7 channels drifted slightly)
- 96 Hour Bake @ +93C (all channels drifted)
- RGA Testing
 - Met Internal Water Vapor Content Requirement:
 1.7%
 - ◆ Hydrogen: 1776ppm

 tantalum nitricle
 hybrid

 microelectronics

 palladium

INDENTIFICATION OF PROBLEM



- Empirical Circuit Analysis Identified two 35k ohm Tantalum Nitride Resistors that set the bias voltage for each side of a LM194 or a MAT02 matched dual NPN transistor to be very sensitive.
- Computer circuit simulation confirmed this finding. A 20 ohm differential shift in the set resistance values between the 2 chips would result in the observed frequency output drifts.
- EDAX Analysis of the 35k ohm thin film Tantalum Nitride chip resistors identified Palladium in the film.
- A catalytic reaction of Palladium and Hydrogen produces mono atomic hydrogen.
- Filled the filter module cavities with a 4% Hydrogen, 96% Nitrogen gas mixture @ 25°C and monitored the electrical performance for 24 hours. Some channels drifted in a similar pattern witnessed earlier.
- An internal visual and EDAX analysis was performed at the conclusion of this testing. Confirmed Palladium on chip resistors.

X-RAY EDS OF TANTALUM NITRIDE RESISTOR

HYPOTHESIS

- When burn-in was performed on hermetically sealed filters at +125°C, hydrogen was desorbed out of the Kovar carriers, epoxy and plated parts and into the air inside each hybrid MIC module.
- A catalytic reaction between the hydrogen and the palladium in the 35k ohm Tantalum Nitride resistors subsequently resulted in slight shifts in their resistance values.
- Due to the design of the analog section, these slight shifts resulted in very large changes in the static output frequency of the filter module channels.

SUPPORTING DATA

- Final RGA test: 1776ppm Hydrogen, 97.8% Nitrogen, 1.57%
 Moisture
- Electron Dispersion X-Ray Detector (EDAX) identified Palladium in Tantalum Nitride resistor films.

POST 96 HOUR BAKE RGA DATA

Hydrogen

0.1775% (1776 PPM)

Nitrogen

97.8073%

Moisture

1.5681% (pass, <5%)

Oxygen

0.2258% (2258 PPM)

Carbon Dioxide

0.1397% (1397 PPM)

Argon

0.0218% (218 PPM)

MEK

0.0540% (540 PPM)

Hydrocarbon

0.0057% (57 PPM)

DRY AIR

Nitrogen ((N2)	78.09%
_ , ,	\ - \ - /	

Oxygen (O2) 20.95%

Argon 0.93%

CO2 0.03%

Neon 0.0018%

Helium 0.00052%

Methane (CH4) 0.00011%

Krypton 0.0001%

Hydrogen (H2) 0.00005% (0.5 PPM)

Ozone (O3) $\leq 0.00005\%$

Xenon 0.0000087%

CO ≤0.00005%

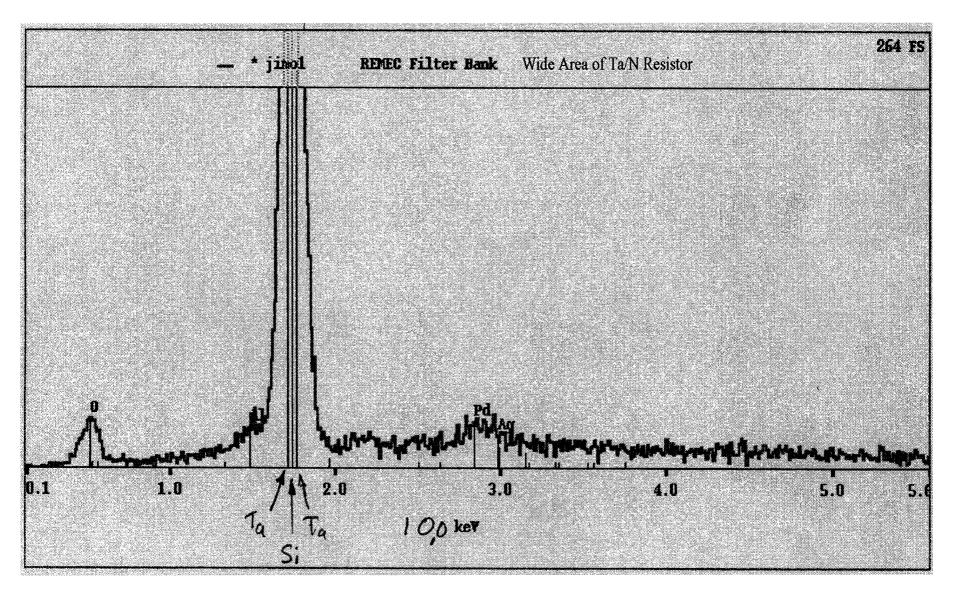
N2O 0.0000003%

SO2 ≥0.0000007%

Nitric Oxide, Nitrogen Dioxide, Formaldehyde, Ammonia (NH3)

Effects of Hydrogen, SoCal'99

INITIAL RGA TEST DATA


GAS DETECTED	MODULE 1	MODULE 2	
Hydrogen	0.4036 % (4036ppm)	0.1930% (1930ppm)	
Nitrogen	65.7737%	77.6249%	
Helium	23.6097%	7.7489%	
Moisture	7.9643%	6.7730%	
CO2	1.8147%	1.4550%	
Oxygen	2747ppm	5.7011%	
MEK	886ppm	779ppm	
Argon	248ppm	3933ppm	
Other: Hydrocarbon, Krypton, THF (all <156ppm)			

Effects of Hydrogen, SoCal'99

X-RAY EDS OF RESISTOR CHIP IN HYBRID

SOURCES OF HYDROGEN

- Ferrous Metal Package Materials, trapped in metal at structural imperfections, grain boundaries, precipitate interfaces, dislocation cores. (Cold Rolled Steel, Kovar, Invar)
- Gold and Nickel Plating Process.
- Microwave Absorbers (powdered iron filings suspended in a carrier such as silicone rubber)
- Epoxy is suspected as a source.
- Capacitors, Circulators, Isolators, Ferrite Pucks, Circuit Substrates, Resistors and Metal Films may be sources.

SIGNIFICANT INFORMATION

- Research theory assumes a catalytic reaction with Palladium and molecular Hydrogen forming mono atomic hydrogen. In GaAs Semiconductors this results in compensation of donors in the channel or a shift in barrier height.
- A 10 to 20 ohm delta shift in resistance value between the two 35k ohm tantalum nitride resistors will result in the observed output drift.
- Modifications as a result of this study, using a center tapped dual tantalum nitride resistor, replacement of Kovar carrier with molybdenum, improved electrical grounding, proper 24 hour preseal vacuum bake and the addition of a hydrogen getter.
- Static output frequency has stabilized by a factor >100 times and there is no longer any frequency drift during burn-in testing of the hermetic cavity.

CORRECTIVE ACTION

- Change Kovar carriers to Copper-Molybdenum.
- Add Hydrogen Getter from Allied Signal Aerospace (HMC Getter) which can maintain hydrogen levels to <1 PPM and the dew point <-100°C
- Open package thermal treatment bake-out at 100 to 110°C.
- Perform 24 hour Vacuum Bake at +85°C prior to welding cover over module in a dry Nitrogen/Helium gas environment.
- Lower Burn-In temperature to +85^oC.
- Replace the two 35k ohm single chip Tantalum Nitride resistors with a dual center tap resistor.
- Locate resistors from a supplier that does not use Palladium in their process.
- Maintain hybrid module temperature below +85°C during all post seal process and screening tests.

SUMMARY

- Isolated Failure Mechanism
- Developed a Hypothesis
- Supported Hypothesis
- Modified Hybrid Design in Accordance With Hypothesis and Other Problems With Circuit.
- Demonstrated new circuit design was now stable.
- Identified new concern with tantalum nitride chip resistors for hydrogen desorbed inside a hermetic microelectronic hybrid device.